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Abstract. Efficient management and prevention of species invasions requires accurate prediction of
where species of concern can arrive and persist. Species distribution models provide one way to identify
potentially suitable habitat by developing the relationship between climate variables and species occur-
rence data. However, these models when applied to freshwater invasions are complicated by two fac-
tors. The first is that the range expansions that typically occur as part of the invasion process violate
standard species distribution model assumptions of data stationarity. Second, predicting potential range
of freshwater aquatic species is complicated by the reliance on terrestrial climate measurements to
develop occurrence relationships for species that occur in aquatic environments. To overcome these
obstacles, we combined a recently developed algorithm for species distribution modeling—range bag-
ging—with newly available aquatic habitat-specific information from the North American Great Lakes
region to predict suitable habitat for three potential invasive species: golden mussel, killer shrimp, and
northern snakehead. Range bagging may more accurately predict relative suitability than other meth-
ods because it focuses on the limits of the species environmental tolerances rather than central tendency
or “typical” cases. Overlaying the species distribution model output with aquatic habitat-specific data
then allowed for more specific predictions of areas with high suitability. Our results indicate there is
suitable habitat for northern snakehead in the Great Lakes, particularly shallow coastal habitats in the
lower four Great Lakes where literature suggests they will favor areas of wetland and submerged aqua-
tic vegetation. These coastal areas also offer the highest suitability for golden mussel, but our models
suggest they are marginal habitats. Globally, the Great Lakes provide the closest match to the currently
invaded range of killer shrimp, but they appear to pose an intermediate risk to the region. Range bag-
ging provided reliable predictions when assessed either by a standard test set or by tests for spatial
transferability, with golden mussel being the most difficult to accurately predict. Our approach illus-
trates the strength of combining multiple sources of data, while reiterating the need for increased mea-
surement of freshwater habitat at high spatial resolutions to improve the ability to predict potential
invasive species.

Key words: environmental niche; golden mussel; habitat suitability; killer shrimp; nonindigenous species; northern
snakehead.
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INTRODUCTION

Aquatic invasive species (AIS) have imposed
substantial ecological damage on freshwater
ecosystems (Ricciardi and Maclsaac 2000, Cucher-
ousset and Olden 2011), prompting a more pro-
active, holistic approach to invasive species
management (Leung et al. 2002, Pagnucco et al.
2015). The identification of high-risk species,
transport pathways (e.g., Ricciardi and Ras-
mussen 1998, Keller et al. 2009, Gantz et al. 2015),
surveillance sites, and opportunities for imple-
mentation of slow-the-spread strategies all rely
upon an accurate prediction of locations suitable
for nonindigenous species to establish and persist
(Gormley et al. 2011, Jiménez-Valverde et al.
2011, Gallien et al. 2012, Vaclavik et al. 2012).

Species distribution models (SDMs) estimate
the statistical relationship between species occur-
rence and environmental conditions (Elith and
Leathwick 2009), and applications of these mod-
els have been used to identify suitable habitat
outside of the current range (Barve et al. 2011),
predict range shifts in response to climate change
(Austin and Van Niel 2011, VanDerWal et al.
2013), and predict the spread of invasive species
(Kulhanek et al. 2011). However, these applica-
tions involve violation of a key assumption of
SDM methods, namely stationarity in species
occurrence (Barve et al. 2011, Pagel and Schurr
2012, Vaclavik and Meentemeyer 2012). A
spreading species is not in equilibrium with envi-
ronmental conditions and has not had previous
opportunity to sample novel environments in
which it may thrive. The result is limited infor-
mation on the suitability of novel combinations
of environmental conditions (Veloz et al. 2012).
For actively invading species, using data from
the invaded and native ranges provides the
strongest basis for extrapolation and is the most
practical approach given that physiological infor-
mation needed for a mechanistic model is gener-
ally lacking (Aragjo and Peterson 2012).
Nevertheless, there is still a risk of underestimat-
ing the extent of suitable habitat.
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Predicting suitable habitat for freshwater aqua-
tic species using SDMs faces an additional chal-
lenge. Species distribution models are typically fit
to measured or interpolated climate or environ-
mental measurements of the terrestrial environ-
ment. This is because the most reliably available
climate variables come from global datasets
(Hijmans et al. 2005, Tyberghein et al. 2012) or
remote sensing (Cord and Rodder 2011, Bisrat
et al. 2012) that primarily measures terrestrial cli-
mate variables. These data are often only an indi-
rect indicator of freshwater environmental
conditions, and several physical characteristics of
water bodies can strongly influence the correla-
tion between atmospheric and aquatic conditions
(Mohseni and Stefan 1999). For example, bottom
waters of deep, seasonally stratified lakes are to a
large extent decoupled from lake surface (and
adjacent atmosphere) for a substantial portion of
the year due to the presence of a thermocline
(Boyce et al. 1989). Moreover, aquatic species
predictions are also sensitive to aquatic environ-
ment-specific conditions such as hydrological and
substrate stability, wave action or flow, water
chemistry or clarity (Leathwick et al. 2005, 2011,
Snelder et al. 2006, Brenden et al. 2008, McKenna
and Castiglione 2010).

Identifying which nonindigenous species are
most likely to be introduced, establish, and to
result in negative impacts is a complex endeavor
that complicates management of biological inva-
sions. This not only requires knowledge about
the pathways of introduction and propagule
pressure, but also the suitability of the receiving
environment and likelihood of establishment
(Leung et al. 2012). One reliable predictor that a
non-native species will cause environmental
damage is invasiveness in other locations (Kolar
and Lodge 2001). In addition, species that have
high rates of introduction or are established in
adjacent regions are also more likely to become
established (Lockwood et al. 2005). For some
species with known invasion histories and obser-
vations of widespread impact, information may
exist on life history, environmental tolerance, and
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persistence outside the native range. The ability
to assess invasion risk can be increased by com-
bining SDMs with this existing information, even
when widespread measurements are not avail-
able to create mechanistic predictions from labo-
ratory-measured environmental tolerances.

We performed a two-part evaluation of the
potential range of three nonindigenous species
that could invade the North American Great
Lakes: golden mussel (Limnoperna fortunei), killer
shrimp (Dikerogammarus villosus), and northern
snakehead (Channa arqus). These species have
been identified by the United States Aquatic Nui-
sance Species Task Force (USACE 2011) as species
of concern to U.S. waters and have been predicted
as probable future invaders of the Great Lakes
(Ricciardi and Rasmussen 1998, Council of Great
Lakes Governors 2013). First, we estimated the
habitat suitability throughout the Great Lakes for
each species using a novel SDM algorithm called
“range bagging” (Drake 2015). This algorithm
was designed to estimate species range limits
based on climate variables measured at all pre-
cisely known occurrences worldwide. To assess
ecosystem-specific suitable habitat, these model
predictions were then merged with high-resolu-
tion spatially explicit data representing the local-
ized aquatic environment in terms of established
species tolerances (Wittmann et al. 2017). The
results provide species range predictions for a set
of molluscan, crustacean, and vertebrate non-
indigenous aquatic species, illustrating the value
of the two-part evaluation and showing that
inclusion of measurements of aquatic conditions
(or more reliable terrestrial surrogates) is key to
providing models for the potential ranges of
invasive aquatic species that are most relevant to
management decisions (Kilroy et al. 2008, US
Environmental Protection Agency 2008).

METHODS

Species

Three species were chosen for this analysis
based on their likelihood of invasion and concern
from scientists and the regional management
agencies. The golden mussel (Limnoperna fortunei;
Dunker, 1857) is an epifaunal bivalve, native to
mainland China. Since the mid-1960s, golden
mussel has been unintentionally dispersed across
the globe through fouling of shipping vessels and
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established populations are now present in Hong
Kong, Taiwan, Japan, Brazil, Paraguay, Uruguay,
Bolivia, and Argentina (Ricciardi 1998). Spawning
occurs at temperatures between 16° and 28°C
(Xu et al. 2013), and after external fertilization, a
free-living straight-hinged larva develops, sub-
sequently evolving into an actively swimming
veliger larva capable of survival in a wide variety
of habitats (Karatayev et al. 2007). Golden mussel
are thought to have life histories and habitat pref-
erences similar to dreissenid mussels, which have
a widespread distribution and ecological impacts
in the Great Lakes watershed (Karatayev et al.
2007, Fahnenstiel et al. 2010, Kerfoot et al. 2010,
Vanderploeg et al. 2010).

Killer shrimp (Dikerogammarus villosus) is an
amphipod native to the Ponto-Caspian region of
eastern Europe and Ukraine. Since the 1980s, it
has spread to at least 17 European countries along
the complex European canal-river systems (Pockl
2009) and to the United Kingdom via maritime
shipping (Gallardo and Aldridge 2012). Killer
shrimp is expected to continue its spread in Eur-
ope and eventually to North America (Ricciardi
and Rasmussen 1998). Many studies show that
D. villosus can prey upon many macroinvertebrate
species, including native and other non-native
amphipods, as well as fish eggs and larvae (Dick
and Platvoet 2000, Dick et al. 2002, Casellato et al.
2006). Dikerogammarus villosus range expansion is
influenced by hydrological regime, temperature,
salinity, water quality, substrate, and food avail-
ability (Bruijs et al. 2001, Devin et al. 2003, Josens
et al. 2005, Boets et al. 2010, MacNeil et al. 2010).

Northern snakehead (Channa arqus) is a fish
native to China, Russia, and Korea (Courtenay
and Williams 2004). It is established in regions of
the eastern and central United States (Potomac
River, Chesapeake Bay, Lower Mississippi River
[Arkansas]), and individuals have been observed
in California, New Jersey, New York, and in water-
sheds adjacent to the Great Lakes (http://nas.er.
usgs.gov). This species is capable of surviving in
poorly oxygenated waters and has been found
inhabiting shallow (<2 m) ponds or swamps,
canals, reservoirs, lakes, and rivers (Courtenay
and Williams 2004). The presence of submersed
aquatic vegetation can provide a benefit for its
reproduction, but is not necessary. Channa argus
has a wider latitudinal range and temperature
tolerance (0° to >30°C) compared with other
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snakehead species (Courtenay and Williams 2004),
and earlier SDMs using global climate data sug-
gest much of North America is suitable (Herborg
et al. 2007). It is an aggressive predator, with a
broad diet including fish, invertebrate, and
amphibian species (Courtenay and Williams 2004).
Northern snakehead is listed as injurious wildlife
under the U.S. Lacey Act (Lacey Act 1900).

Occurrence data

Worldwide occurrence records for each study
species were obtained from the primary litera-
ture, the Global Biodiversity Information Facility
(http://www.gbif.org/), FishBase (Froese and
Pauly 2011), and USGS (http://nas.er.usgs.gov)
databases. All records with position uncertainty
>50 km were removed to ensure accurate match
with the environmental data. All presence loca-
tions in both the native and introduced ranges
were included in this analysis, yielding 81
unique locations for L. fortunei (22 native and 59
introduced; Appendix S1: Fig. S1), 233 unique
locations for D. villosus (16 native and 217 intro-
duced; Appendix S1: Fig. S2), and 198 unique
locations for C. argus (47 native and 151 intro-
duced; Appendix S1: Fig. S3).

Environmental data

Nineteen global climate surfaces were
obtained at 5-min resolution from the WorldClim
dataset (Hijmans et al. 2005; http://www.worldc
lim.org). These variables are derivations of
monthly rainfall and climate data that have been
interpolated from weather stations, and are
designed to have increased relevance to species
physiological limits (Hijmans et al. 2005, Gra-
ham and Hijmans 2006). To reduce bias and
improve model stability, climate variables were
rescaled and, in some cases, transformed. Vari-
ables BIO1-BIO11 and BIO15 were rescaled by
subtracting the global mean and dividing by the
global standard deviation. Variables BIO18 and
BIO19 were rescaled similarly after log transfor-
mation to improve symmetry. Variables BIO12-
BIO14, BIO16, and BIO17 were transformed via
the empirical cumulative distribution function to
obtain a uniform distribution as a normal distri-
bution could not be approximated. (See archived
R code for further details.) All climate variables
were included in the analysis in order to estimate
the best predictive model given the limited a
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priori understanding of the correlations between
atmospheric and aquatic climate and of which
variables are most influential for each species.

Data on the distribution of submerged aquatic
vegetation (SAV) at 30-m resolution in the opti-
cally shallow areas of Lakes Huron, Michigan,
Erie, and Ontario were obtained from the Michi-
gan Tech Research Institute. These data were
generated using an MTRI-developed depth-
invariant algorithm and depend on Landsat
satellite data collected during the vegetative
growing season (Michigan Tech Research Insti-
tute 2012, Shuchman et al. 2013). Vegetative
growing season and years varied by lake: Lake
Erie, May-September 2006-2011; Lake Huron,
March-September 2007-2011; Lake Michigan,
April-May 2008-2011; and Lake Ontario, April-
September 2008-2011. Some portions of these
lakes could not be classified due to high turbidity.
Submersed vegetation data did not exist for Lake
Superior or Lake St. Clair. Data for the remaining
four lakes were combined using the Mosaic to
New Raster tool process in ArcGIS version 10.2
(ESRI 2014) with a cell size of 30 m. This study
used classes 1 (light SAV) and 7 (dense SAV).

Data on the spatial distribution of wetlands
were compiled by the Great Lakes Coastal Wet-
land Inventory (Great Lakes Coastal Wetland
Consortium 2004). The inventory utilized the
most comprehensive coastal wetlands data avail-
able for the Great Lakes and connecting channels
and was derived from multiple sources. Coastal
wetlands polygonal data were rasterized with a
cell size of 30 m.

Benthic temperature data acquired from the
National Oceanic and Atmospheric Administra-
tion Great Lakes Coastal Forecasting System
(GLCFS) nowcasts were summarized by the
Great Lakes Aquatic Habitat Framework. The
GLCFS uses a 3D hydrodynamic model (Schwab
and Bedford 1994, Chu et al. 2011, Beletsky et al.
2013) with a horizontal resolution ranging from
2 km (Lakes Erie, Huron, and Michigan) to 5 km
(Lake Ontario) and 10 km (Lake Superior) to
nowcast lake temperatures (among other physi-
cal variables) at 20 vertical levels in all lakes
except Lake Erie (that has 21 levels). Averages of
August monthly data from the years 2006 to
2012 were used and were combined for individ-
ual lakes using a mosaic process with an output
cell size of 2000 m (ESRI 2014).
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Modeling potential distribution

To determine the habitat suitability in novel
environments, we applied SDMs using the range
bagging algorithm (Drake 2015). This algorithm
estimates species range limits in multi-dimen-
sional climate space using bootstrap aggregation.
Range bagging has comparable accuracy to the
widely used MaxEnt approach on high-quality
validation datasets (Drake 2015) and also per-
forms similarly to widely used SDMs for tradi-
tional approaches (J. M. Drake and R. Richards,
unpublished data) and invasive species (Wittmann
et al. 2017; R. C. Cope, J. V. Ross, J]. M. Drake
et al., unpublished data) including the three species
considered here (A. M. Kramer, M. E. Wittmann,
and J. M. Drake, unpublished data). Range bagging
was chosen over some more commonly used algo-
rithms (e.g., MaxEnt) for two primary reasons.
First, range bagging estimates the environmental
limits of species habitat, giving it an ecologically
relevant interpretation (Drake 2015; R. C. Cope,
J. V. Ross, J. M. Drake et al., unpublished data).
This quantity more closely matches the concept of
the ecological niche advanced by Hutchinson
(Hutchinson 1957). Consideration of environmen-
tal tolerances—rather than the central tendency—
may offer a more conservative (i.e., larger) esti-
mate of the ecological niche relevant to invasive
species risk assessment. Further, range bagging
uses only presence points, removing the need for
selecting a suitable area from which to sample
background points, as this choice has recently
been shown to have substantial effects on model
reliability (Barve et al. 2011; A. M. Kramer, M. E.
Wittmann, and J. M. Drake, unpublished data).

Range bagging models were constructed by
fitting convex hulls to 256 random combinations
of two environmental variables from the global
climate surfaces (Drake 2015). We specified the
parameter identifying the proportion of points
sampled in each bootstrapped combination to be
1. While smaller subsets may give better perfor-
mance on the hold-out test points if presences are
sampled from sink habitat (Drake 2015), such
limitations could be restrictive relative to novel
environmental conditions experienced by non-
native species. Along with all approaches to
species distribution modeling, range bagging
models may still be biased due to the issues of
non-stationarity and novel environmental combi-
nations. For validation, therefore, models were fit
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to 80% of the data and performance (area under
the receiver-operating curve, or AUC) was evalu-
ated on a 20% hold-out test set (Appendix S1: Fig
S4). For golden mussel, a 60—40 training test split
was used due to fewer data points. The models
fit to the training data are presented in the maps,
such that performance on the 20% (or 40% for
golden mussel) hold-out test set provides the
measure of accuracy of the displayed models. As
a second measure of performance, we estimated
the continuous Boyce index (Hirzel et al. 2006,
Petitpierre et al. 2012). The Boyce index was
designed for presence-only data and was calcu-
lated with the R package “ecospat.” The Boyce
index varies from —1 to 1 with values greater
than zero indicating agreement between the pre-
diction and the presences in the test data (Hirzel
et al. 2006). The AUC and the Boyce index were
calculated with the same model output and data
for each run of the model. Variance in model
performance was assessed with 10-fold cross-
validation on the training data (Appendix Sl:
Fig. 54). Additionally, we estimated the transfer-
ability of the model by performing fivefold cross-
validation on data that were divided into
longitudinal bins (Wenger and Olden 2012;
Appendix S1: Fig. S4). This test measures the
ability of the model to predict occurrence in dis-
tinct geographical areas, with longitudinal bins
being appropriate for the occurrence of these spe-
cies on multiple continents. Code used to fit
models and display results is archived on Dryad
(https://doi.org/10.5061/dryad.d4144).

The outcome of a range bagging model is an
estimate of niche centrality for each species at
each point on a map. After fitting the model,
niche centrality was estimated for each grid cell
in the global climate dataset and mapped. Niche
centrality refers to the tendency of an environ-
ment to be centered within the environmental
range of a species across multiple environmental
variables. We also estimated variable importance
for each species by permuting each predictor
variable and measuring the reduction in accu-
racy on the withheld test set. Because data reflect
only occurrence records, a set of random back-
ground points was necessarily selected to func-
tion as absence points in the AUC calculation
(Elith and Leathwick 2009). These points were
taken from a large buffer (2000 km surrounding
the known occurrence records), consistent with
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the fact that these species are well known to be
entrained in long-distance transport pathways
and therefore not greatly limited by dispersal.

Aquatic habitat suitability

Species-specific information on environmental
limits to occurrence, survival, and spawning was
collected from extensive review of the primary
literature, which included but was not limited to
field-based and laboratory experiments, surveil-
lance efforts, and review and synthesis publica-
tions. Published limits in any measured
environmental variable, including temperature,
substrate type, water chemistry, and aquatic veg-
etation, were recorded. Cases for which reliable
Great Lakes-wide data were unavailable were
discarded (primarily water quality data and zoo-
plankton species composition). When sources
differed in their reported limits, the extrema from
the set of values were considered to be the limit.
This resulted in surprisingly limited concrete
knowledge about environmental limits to estab-
lishment and persistence for the three species
considered here. These environmental conditions
were then used to restrict the projected range
bagging model to the suitable areas of the Great
Lakes, treating the environmental limits as
thresholds beyond which habitat was unsuitable
for that aspect of species life history.

As spawning temperature >16°C is required
for golden mussel reproduction (Xu et al. 2013),
available benthic temperature data on the Great
Lakes were used to delineate the potential
spawning habitat. Constraints based solely on
depth were not included, although it is thought
that golden mussel may colonize the same habi-
tats as dreissenid mussels in the Great Lakes
(Ricciardi 1998). Further, the existing measured
depth limits for golden mussel are constrained
by sampling and their current largely riverine
distribution.

Published field and laboratory studies of killer
shrimp did not identify any useful environmen-
tal limitations that could be addressed with the
Great Lakes dataset. The reported temperature
range for survival is large (Bruijs et al. 2001,
Wijnhoven et al. 2003, van der Velde et al. 2009),
as is substrate usage (Boets et al. 2010) and dis-
solved oxygen (Gallardo and Aldridge 2012).
Killer shrimp has only been reported at shallow
depths (Lods-Crozet and Reymond 2006), but as

ECOSPHERE % www.esajournals.org

KRAMER ET AL.

with golden mussel this limit appears to depend
on sampling, the limited depth range of colo-
nized habitats, and other factors, rather than a
well-understood biological limitation.

The minimum temperature requirement for
northern snakehead spawning is 18°C (Amanov
1974), and survival has been observed at temper-
atures 0-30°C (Okada 1960, Courtenay and Wil-
liams 2004). Channa argus are known to survive
long periods in low-oxygen environments (Frank
1970, Courtenay and Williams 2004) and prefer
habitats with mud and aquatic vegetation
(Okada 1960, Courtenay and Williams 2004).
Thus, Great Lakes regions with wetlands and
SAV are of particular concern, even though the
fish is able to occur outside of these areas (Ama-
nov 1974). To identify areas where population
densities and ecological impacts may be highest,
the snakehead niche map was restricted by the
combination of coastal wetlands and SAV.

REesuLTs

Golden mussel

There was relatively little climate overlap
between the Great Lakes basin and native and
current non-native golden mussel distribution
(Fig. 1). Niche centrality was highest in Lake Erie,
but never exceeded 0.39, indicating most of the
marginal niche models did not include environ-
mental conditions observed in the Great Lakes
basin. At the global scale, several regions where
golden mussel is not established had much
higher relative suitability, including the southeast
United States and eastern Australia (Fig. 2).
Model AUC on a balanced set of withheld test
points and random background points was 0.89
(Appendix S1: Fig. S5), and the Boyce index was
0.78. Random cross-validation showed a similar
average AUC and slightly lower Boyce index
(Appendix S1: Figs. S6, S7). The spatial cross-vali-
dation for golden mussel had much weaker per-
formance, indicating the invaded and native
ranges experience distinct climates (Appendix S1:
Figs. S6, S7). The most influential variable for
model performance was seasonality of precipita-
tion (Appendix S1: Fig. S8); however, the loss of
performance from permuting any single climate
value was small and of similar magnitude, indi-
cating redundancy due to high correlation
among variables and/or a multivariate niche.
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Fig. 1. Golden mussel niche centrality in the North American Great Lakes basin. Low values of niche centrality
indicate climate conditions in the Great Lakes basin are often outside of the predicted niche.
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Fig. 2. Golden mussel global niche. Map of niche centrality values with higher values indicating climate condi-

tions falling within the modeled niche.

The suitable niche for golden mussel was fur-
ther restricted when limitations on reproduction
were taken into account. Areas with average
summer benthic temperatures warm enough to
facilitate spawning were limited to Lake Erie,
southern Lake Michigan, and shallow bays of all
lakes (Fig. 3). The range bagging model and
water temperature data indicated that Lake
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Superior and colder areas are unlikely to support
viable populations.

Killer shrimp

Killer shrimp displayed variable, intermediate
niche centrality across the Great Lakes basin, with
the highest match with current occurrences occur-
ring in the southern regions (Fig. 4). There were

7 July 2017 ** Volume 8(7) ** Article e01883



KRAMER ET AL.

1
Ln_[l o] l: 0.9
0 100  200km .

Lake Superior — 0.8

48°N —
North 07

46°N — — 0.6

Lake 05

Huron

Latitude

— 0.4

Niche centrality

44°N — s
ake Ontario
— 0.3
Lake
Michigan
Lake Erie 02

42°N — L 0.4

[ [ [
90°W 85°W 80°W
Longitude

Fig. 3. Golden mussel habitat suitability restricted by spawning habitat. Visualization of the climate-based
niche in areas of the Great Lakes warm enough for golden mussel spawning. Spawning can occur at benthic tem-
peratures >16°C (Xu et al. 2013).
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Fig. 4. Killer shrimp niche centrality in the North American Great Lakes basin. Intermediate values of niche
centrality indicate climate conditions in the Great Lakes basin often, but not completely, overlap the predicted
niche.
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no areas fully within the climate envelope of
known killer shrimp populations. Indeed, viewed
at the global scale, the climate niche only estimates
high niche overlap for the native and currently
invaded areas in the Ponto-Caspian region and
Europe (Fig. 5). Model AUC was high at 0.96
(Appendix S1: Fig. S9) with the most influential
variables including the amount of precipitation in
the wettest month and the wettest quarter
(Appendix S1: Fig. S510). The Boyce index was 0.56,
with comparable performance for both random
and spatial cross-validation (Appendix Sl:
Figs. S6, S7). Alternative models using only tem-
perature covariates had lower (killer shrimp and
snakehead) or equivalent performance (golden
mussel) for these species and did not provide
increased ability to differentiate importance
among the correlated climate predictors. As
explained above, the few directly measured biotic
limitations to killer shrimp persistence were so
broad as to include the entirety of the Great Lakes.

Northern snakehead

The snakehead niche model estimated high cli-
mate overlap in the Great Lakes basin. The major-
ity of Lake Erie, Lake Michigan, and Lake
Ontario, as well as large areas of Lakes Huron
and Superior, had niche centrality exceeding 0.8
(Fig. 6). This was unsurprising given the high
niche centrality of much of eastern North America
(consistent with the frequency of known persis-
tent populations in this region; Appendix Sl:
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Fig. S8). The model predicted a large area of Eur-
ope and part of South America as equally suitable
environments for this species (Fig. 7). Model AUC
was 0.93 (Appendix S1: Fig. S11) and Boyce index
was 0.73. Cross-validation showed consistently
positive AUC and Boyce indices (Appendix SI:
Figs. S6, S7). Several climate variables were influ-
ential in model performance, including the tem-
perature of the wettest quarter and the diurnal
range in temperature (Appendix S1: Fig. S12).

Areas with surface water temperatures suitable
for northern snakehead spawning were relatively
limited, but they occurred in all lakes other than
Lake Superior (Fig. 8). Areas with existing SAV
and wetlands comprised only 2% of the lake area,
but constitute suitable habitat for this species
(Fig. 9). In most cases, the spawning temperatures
and aquatic vegetation coincide, indicating the
potential for significant ecological impact if snake-
head were to establish in the lakes.

DiscussioN

Integrating habitat-specific information that
characterizes the underwater environment with
SDMs improved the delineation of potential
suitable habitat for nonindigenous species. As a
result, we were able to use an SDM with a range
bagging algorithm to provide informative
estimates of relative climate suitability for all
three species at the regional scale. While these
suitability estimates cannot directly predict the
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Fig. 6. Northern snakehead niche centrality in the North American Great Lakes basin. Map of niche centrality
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falling within the modeled niche.

probability of persistence without additional
information (Phillips and Elith 2013), the high
AUC values indicated these models did success-
fully predict occurrence of the three species in
their native and current introduced ranges. The
broad temperature range of killer shrimp and
lack of information on other habitat requirements
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precluded the production of a habitat-specific
delineation for this species. However, high-reso-
lution aquatic environmental data from within
the Great Lakes enabled prediction at finer scale
by identifying specific areas with highest chance
of establishment and persistence for golden mus-
sel and snakehead, as well as areas likely to
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enable population growth and spread. To gener-
alize across species, Lake Erie and southern Lake
Michigan contained the areas most similar to the
current climate niche of these species, while Lake
Superior was more peripheral. Further, shallow
coastal habitats appear to be most at risk if these
species become established in the Great Lakes,
whereas deeper, colder benthic habitat of all
lakes appears to be unsuitable.

The high AUC values for the test data and the
random cross-validation showed that the range
bagging models were effective at determining
the relative suitability of these species for their
native and introduced range. These high AUC
values were supported by positive Boyce indices,
indicating the models did better than random at
predicting suitability for presences in the test and
random cross-validation datasets. These findings
were also validated for killer shrimp and snake-
head using the more challenging approach of
spatially subdividing the datasets suggested by
Wenger and Olden (2012). Models for golden
mussel performed more poorly when fit to spa-
tially defined subsets of the data than to all the
data. In fact, the Boyce index suggested perfor-
mance no better than random under this cross-
validation. This highlights one of the difficulties
of fitting SDMs to species in the process of invad-
ing multiple regions. This is unsurprising for
golden mussel, given the distance and differ-
ences between the native range in East Asia and
invaded areas in South America. One implication
is that a model fit only to the native range would
misrepresent and underestimate the suitability of
various habitats, indicating that using all avail-
able occurrences from the native and introduced
ranges is likely to produce the most reliable pre-
dictions. At the same time, this case reminds us
that SDMs can perform poorly with non-analog
climates. Accordingly, the analyses presented
herein models represent an attempt to estimate
risk as effectively as possible, but they may
underestimate risk for particular locations.

To our knowledge, this is the first global niche
model of golden mussel, an invader having
strong impacts in its introduced ranges (Ricciardi
1998). While the Great Lakes climate is relatively
distinct in seasonality and temperature from the
observed niche, several other areas appear to be
highly suitable for establishment of this species,
including uninvaded parts of South America, the
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Gulf of Mexico, southeastern United States, the
east coast of Australia, and parts of southeast
Africa. Our analysis suggests that increasing
surveillance in these areas may be warranted. If
this species could establish in the relatively novel
environment of the Great Lakes, its ability to
reproduce would probably be limited to Lake
Erie and the warmer and shallower parts of
Lakes Michigan, Huron, and Ontario. However,
this does allow that the lakes could still act as a
beachhead for invasion (Rothlisberger and Lodge
2013) of the more suitable Lower Mississippi
River via the Chicago Area Waterway System,
potentially mirroring the historic spread of dreis-
senid mussels across North America. There is
also potential for suitable spawning area to grow
given expected increases in surface water tem-
peratures in the Great Lakes (Trumpickas et al.
2009, Kao et al. 2015). The ability to incorporate
these underwater-specific habitat data layers rep-
resenting the golden mussel’s temperature limita-
tion improves the understanding of where
surveillance efforts can be focused. Relevant
environmental layers on water chemistry or sub-
strate type are not yet available for the entirety of
the lakes, but the tolerances of golden mussel are
broad enough that few parts of the lake would
fall outside their tolerance (Ricciardi 1998, Bol-
tovskoy et al. 2006).

Our analysis provides a less clear prediction
for killer shrimp in the Great Lakes. The niche
centrality for the lakes is ambiguous, generally
between 0.2 and 0.5, with Lake Superior again
being the most peripheral. This could mean that
the Great Lakes may be marginal but possibly
suitable habitat for killer shrimp. However, the
current distribution of killer shrimp is environ-
mentally restricted by a contiguous geographic
and climatic area, and our knowledge of this spe-
cies is primarily derived from canal and riverine
habitats (Pockl 2009), which limits the ability to
develop alternative environmental limits that can
be applied within the lakes. Thus, it could be
either that these are the only suitable environ-
ments or that the species simply has not yet been
transported to other novel habitats, making non-
stationarity a contributor to the uncertainty of
predicting killer shrimp habitat. Moreover, given
the existing distribution, the Great Lakes had the
highest niche centrality of potential introduction
regions globally, consistent with a previous
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analysis of European ports (Keller et al. 2011).
Since killer shrimp can persist across the range of
water temperatures observed in the Great Lakes
and seem to have a broad diet, we were unable
to further pinpoint high-risk areas based on local
environmental conditions. For example, killer
shrimp have been shown to successfully colonize
hard substrates (i.e.,, stones) and low-density
zebra mussel habitats (Kobak et al. 2015). While
consistent spatial data on the distribution of
these habitats are not yet available for the whole
of the lakes, information on these habitats at the
local scale could further inform assessments of
risk for killer shrimp establishment.

Climate conditions throughout much of the
Great Lakes significantly overlap with the esti-
mated niche of northern snakehead. This is con-
sistent with predictions of Herborg et al. (2007) as
well as observations of occurrences of this species
elsewhere in North America, including water-
sheds adjacent to the Great Lakes. However, our
inclusion of within-lake environmental conditions
produced a refinement on previous models based
on surface temperature, and helped identify speci-
fic habitats vulnerable to this species. Required
spawning temperatures indicate that specific and,
outside of Lake Erie, relatively limited areas
would be available for reproduction. Submerged
aquatic vegetation/wetland regions in the Great
Lakes overlapped with the suitable spawning
temperatures, suggesting that these habitats may
be vulnerable to snakehead establishment.

Modeling these three species reinforces the ben-
efits and challenges of relying on climate variables
to apply SDMs in aquatic systems, particularly
large lakes and rivers that are poorly coupled to
proximal air temperature and precipitation (Boyce
et al. 1989, Gronewold and Stow 2013). This is
especially relevant for the Great Lakes where the
bottom temperature changes little throughout the
year in areas deeper than about 30 m. Range bag-
ging SDMs effectively estimated the intensity of
occurrence in the current range, providing impor-
tant information on relative suitability of locations
at the regional and global scales. The analysis sug-
gests the relative importance of precipitation at a
global scale as surrogates for riverine hydrologic
regime (Leathwick et al. 2011), although these
variables are likely to have limited relevance
within the waters of the Great Lakes themselves
and are correlated with each other. Further, the
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microhabitat variations that are known to be
important for many aquatic species are often
unrelated to surface climatic measurements. Here,
we build on previous Great Lakes case studies
(US Environmental Protection Agency 2008) that
have combined satellite-derived data layers with
climatic data, and show how well-characterized
subsurface aquatic habitat variables can also be
used to improve spatial risk assessment.

The visualizations of habitat suitability pro-
duced here could be an important tool for natu-
ral resource managers, and advance the
understanding of the risk of invasion by these
three species. This process of combining informa-
tion from species locations and studies of envi-
ronmental tolerances will have value for many
other aquatic species. This process also highlights
the need for the development of a standardized
set of global or regional aquatic habitats data lay-
ers and measurements. By associating additional
data on variables such as pH, nitrogen, phospho-
rus, calcium, substrate, and water temperature
with species presences, more direct, high-resolu-
tion models could be produced. The substantial
ecological and economic costs posed by AIS
should motivate the collection of such datasets
and continued advances in integrating different
types of information.
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